Change in Electronic Structure of the $IC\overline{L}$ Anion in NH_4ICl_2 Crystals due to an Excitation of Reorientational Motion of the Ammonium Ion

Tetsuo Asaji, Maki Sekioka, and Koh-ichi Suzuki

Department of Chemistry, College of Humanities and Sciences, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan

Reprint requests to Prof. T. A.; E-mail: asaji@chs.nihon-u.ac.jp

Z. Naturforsch. **57 a,** 327–332 (2002); received January 18, 2002

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

Two ^{35}Cl NQR frequencies, $\nu_a = 9.148$ and $\nu_b = 28.286$ MHz, were observed at 77.3 K in NH₄ICl₂. ν_a and ν_b showed a strong temperature dependence with positive and negative temperature coefficient, respectively. This anomalous temperature dependence is explained by a temperature dependence of the mole fraction of the hydrogen-bonded IC Γ ion. The energy difference, $\Delta E_{\rm anion}$, of the anion between the hydrogen-bonded and the non-bonded states was derived as $\Delta E_{\rm anion} \approx 700~{\rm K}~(5.8~{\rm kJ~mol^{-1}})$ and as $\Delta E_{\rm anion} \approx 640~{\rm K}~(5.3~{\rm kJ~mol^{-1}})$ for NH₄ICl₂ and ND₄ICl₂, respectively. The temperature dependence of the spin-lattice relaxation time $T_{\rm s}$ showed a clear minimum in the ln $T_{\rm l}$ vs. $10^3{\rm K}/T$ plots, which can be interpreted as due to EFG modulation by the reorientational motion of the ammonium ion. The reorientation of the ammonium ion among stable and meta-stable orientations is expected to be responsible to the temperature variation of electronic structure of the IC Γ anion.

Key words: Hydrogen Bond; Electronic Structure; Ammonium Ion; Reorientaion; NQR.